

Agenda

Introduction

Main animal groups

Tea Break

Seaweeds

Practical on the Shore

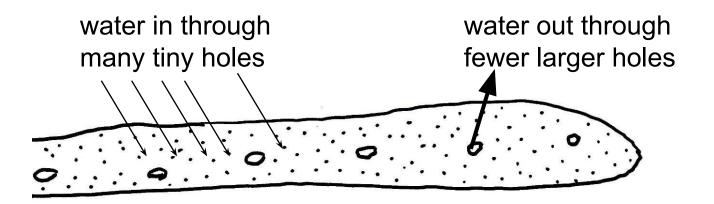
Debrief

Health & Safety Evacuation – fire exit/meeting point First Aid Toilet

Smoking – outside

Mobile phones – on silent please

Refreshments


KINGDOM PHYLUM CLASS ORDER **FAMILY** GENUS **SPECIES**

Main Groups of Marine Animals

- **Sponges** (Porifera)
- Anemones, corals, hydroids, jellyfish (Cnidaria)
- Crabs, lobsters, prawns, barnacles (Crustacea)
- Segmented Worms (Annelida)
- Sea mats (Bryozoa)
- Starfish, brittle stars, sea urchins, sea cucumbers (Echinodermata)
- Sea snails, sea slugs, bivalves, cuttlefish (Mollusca)
- Fish (Chordata, Pisces)

Sponges

Key ID Characteristics

- Simple, attached animals
- Occur in many different shapes and sizes and colours
- No distinctive body parts
- Spongy, porous texture

Feeding - filter tiny organisms from the water

- beating 'flagella' create water flow into sponge body
- draw water in through numerous tiny inlet holes
- flagella capture food
- water flows out through a few larger outlet holes

Breadcrumb sponge

Halichondria panicea

Sponge identification — Tricky without a microscope

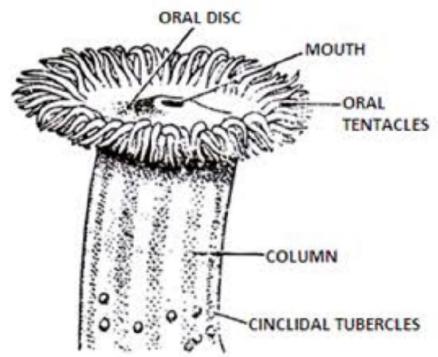
- Breadcrumb sponge most commonly seen alive low shore
- Width: Up to 1m, normally patches of 10-20cm

Mermaid's glove

Haliclona oculata

Sponge identification — Tricky without a microscope

- Mermaid's glove often found in strandline
- 30 cm tall and numerous branches with a diameter of about 7 mm and are usually laterally compressed
- Velvety surface with a robust consistency but is easily compressible and very flexible


Anemones and corals Hydroids Jellyfish

Anemones and corals Hydroids Jellyfish

Key ID Characteristics

- Radially symmetrical
- Column with a body cavity
- Single opening to cavity
- Catch food with stinging cells on tentacles around mouth
- Carnivorous, feeding on plankton or small animals

Anemones and corals Hydroids Jellyfish

Anemones on rocky shores

- all over shore in damp locations
- withdraw tentacles into mouth when exposed to air
- sedentary, but can move position, or re-attach
- colour: red, green, brown, with blue beads
- Diameter: 5cm

Beadlet anemone

Actinia equina

Anemones and corals Hydroids Jellyfish

Anemones on rocky shores

- occasionally low on shore, in rockpools
- partially buried in sand or gravel
- colour bands on tentacles
- Diameter: up to 15cm

Dahlia anemone Urticina felina

Anemones and corals Hydroids Jellyfish

Burying Anemone

Sagartia troglodytes

- Various Sagartia species on the shore
- Some bury in sediment, attached to stone below
- Some attached to rocks

Phylum Cnidaria

Anemones and corals Hydroids Jellyfish

- Most live in colonies which form into different shapes
- Colony made of thousands of tiny inter-connected polyps
- Each polyp has stinging cells on tentacles to catch prey
- Usually up to 30-35 cm in length but can reach 50 cm

Anemones and corals Hydroids Jellyfish

Many hydroid species wash up along the strandline

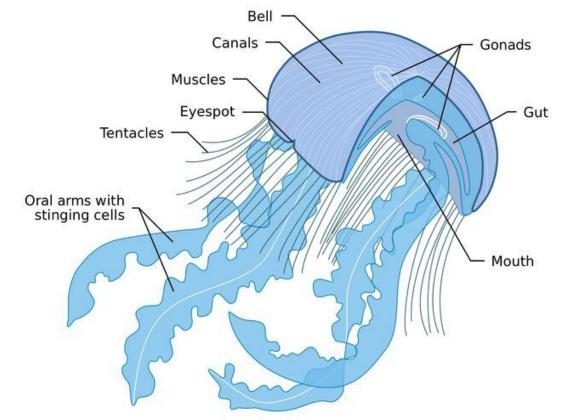
White weed hydroid

Sertularia cupressina

Anemones and corals Hydroids Jellyfish

- A few small species occasionally found living on the shore
- growing attached to seaweeds or rocks

Hydroid *Dynamena pumila*



Branched stems reach greater heights than non branched stems with a maximum of 7.5 cm and 3 cm respectively.

Anemones and corals Hydroids Jellyfish

- Same basic structure as anemones
- Not attached but hang upside-down, drifting in the currents

Anemones and corals Hydroids Jellyfish

- A few species occasionally seen on the shore
- Usually brought in with rough weather and stranded
- Bell: up to 30cm across

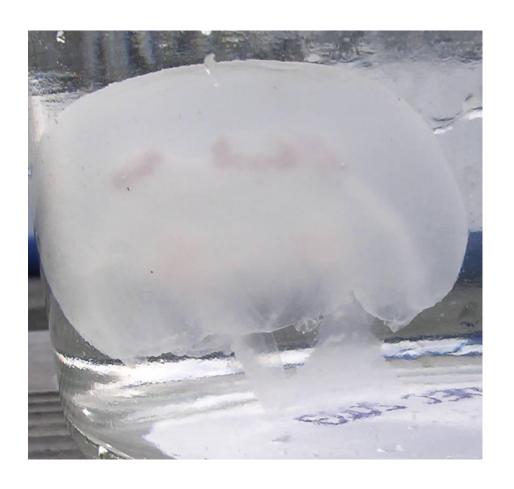


Cyanea lamarckii

Anemones and corals Hydroids Jellyfish

Blue jellyfish Cyanea lamarckii

Food for turtles around UK

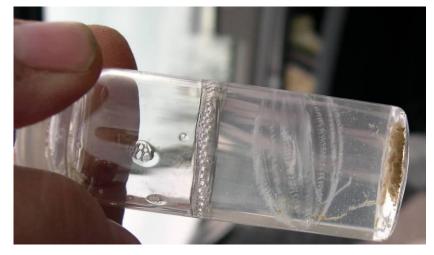

Anemones and corals Hydroids Jellyfish


Sometimes seen alive in sheltered water in marinas

<u>Diameter: 5 – 40 cm</u>

Moon jellyfish

Aurelia aurita


Anemones and corals Hydroids Jellyfish

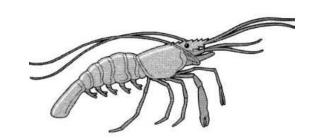
- All jellyfish have stinging cells to catch their prey
- Some are harmful to humans, but many are not

Blue jellyfish not very dangerous to humans, but closely related to Lion's Mane which is!

- Not to be confused with Comb Jelly / Sea Gooseberry (phylum Ctenophora)
- Similar looking gelatinous, transparent bodies, but with lines of tiny 'combs' and with sticky threads, not stinging cells on tentacles
- Range from a few millimeters to 1.5 m in size

Barnacles

Key ID Characteristics


- Hard external skeleton, moulted to allow growth
- Three regions: head thorax abdomen (each segmented)

• Segments have appendages modified for various uses: jointed legs, gills, antennae, mouthparts, etc.

- Five pairs of legs
- Hard 'carapace' covering head and thorax
- Tail
- Eyes obvious

Barnacles

Movement

- All crustaceans have jointed legs
- Sideways walking is most effective for crabs

Barnacles

Moulting

- All crustaceans have hard external skeleton
- Moulted several times during life, to allow growth
 - 2 3 hours for moult

3 - 4 days to harden

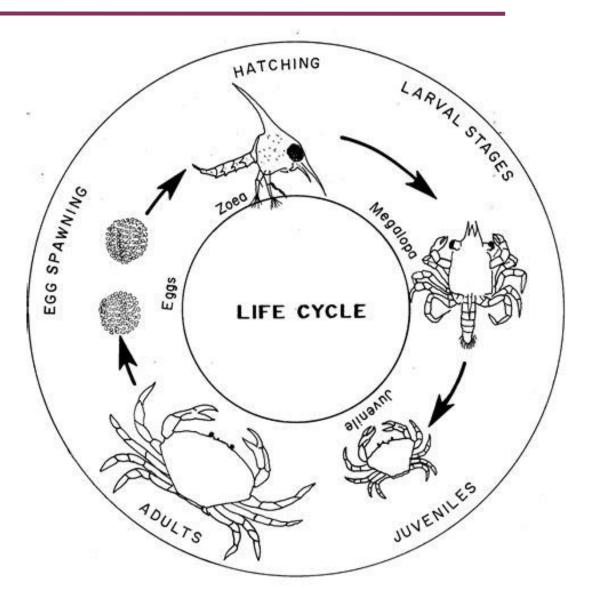
Shore crab Carcinus maenas

Barnacles

Moulting

- Crab about one third larger after moult
- Moulting allows for regeneration of limbs
- Moults are more frequent when young (around 3 per year)

Edible crab & moulted carapace


Cancer pagurus

Barnacles

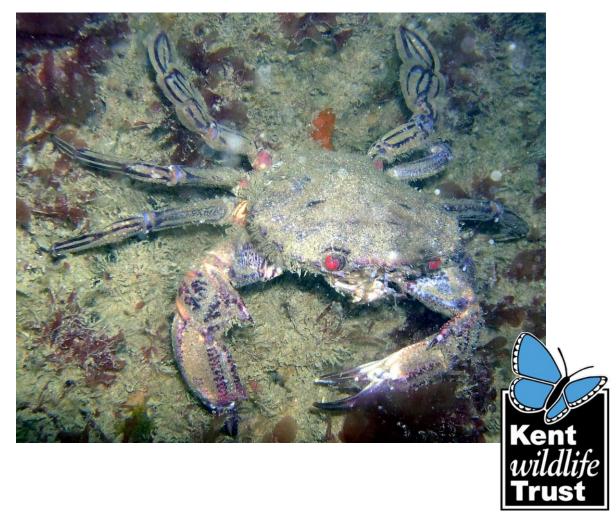
Reproduction

- Sexes are separate
- In crabs, fertilisation is internal
- Male finds female and waits for her to moult, then mates
- Female carries eggs under tail flap for a few months up to 185,000 in shore crabs up to 2,000,000 in edible crabs
- Larvae in plankton for a few months, going through several stages to becoming a crablet

Barnacles

Shore crab Carcinus maenas

- Mature in about one year; maximum size in four years
- Feeds on variety of small animals
- All types of shores
- Shell width: Up to 9cm



Barnacles

Velvet swimming crab Necora puber

- Flat paddles make it a powerful swimmer
- Feeds on brown seaweeds, crustaceans and molluscs
- Shell width: up to 10cm across

Barnacles

Edible crab Cancer pagurus

- Feed on various animals, including molluscs
- Mature at 3-5 years
- Can live 20 years
- Width of body: 10-20cm

Crustaceans

Crabs, lobsters, shrimps and prawns

Barnacles

Hermit Crabs Pagurus sp.

- Lives in empty mollusc shells protect soft abdomen
- Head and thorax hard exoskeleton moults as other crabs
- Also changes mollusc shell as crab grows
- Length of body: 3.5cm

Crustaceans

Crabs, lobsters, shrimps and prawns

Barnacles

Spider Crabs

Triangular carapace

Spiny spider crab *Maja squinado*

- Carapaces found on strandline
- Body: Up to 20cm long

Slender spider crab *Macropodia* sp.

- Found live on shore
- Well camouflaged with seaweeds
- Shell length is *3.2 cm and the breadth *1.1 cm

Barnacles

Porcelain Crabs

- Rounded carapace, very long antennae, reduced hind legs
- Under stones on the shore
- Suspension feeders
- Length: 15mm

Broad-clawed porcelain crab

Porcellana platycheles

Long-clawed porcelain crab

Pisidia longicornis

Barnacles

Squat lobsters

- Tail folded under body
- Small hind legs
- Mostly feeds by filtering
- Hide under rocks and in crevices
- Up to 10cm long (including tail)

Galathea strigosa

Barnacles

Lobster Homarus gammarus

- Mature at 5-6 years
- Can live more than 20 years
- Scavengers
- Occasionally see at very low water mark, or Walpole Bay Pool
- Length: usually up to 50cm

Barnacles

Prawns and Shrimps

- Feed on a variety of small animals and plants
- Important prey species of many fish

Barnacles

Prawns

- Common in rockpools
- Transparent body often with coloured markings
- Front two pairs of limbs with small nippers to pick up food
- Swim slowly forwards or quickly backwards with tail flick
- Rostrum
- Several long antennae

Common shore prawn

Palaemon elegans

Length: up to 11cm

Crustaceans

Crabs, lobsters, shrimps and prawns

Barnacles

Common prawn

Palaemon serratus

Common shore prawn

Palaemon elegans

Barnacles

Shrimps

- Common on, or buried in, sand below water
- Mottled brown, semi-transparent
- Head and body flattened downwards compared to prawn
- Front pair of limbs with claws to pick up food
- Swim slowly forwards or quickly backwards
- No rostrum. Long antennae

Brown shrimp Crangon crangon

Length: Up to 8cm

Barnacles

Barnacles

- Shrimp-like animal inside hard calcium case
- Filter food from water
- Close plates when exposed to air
- Hermaphrodite (both male and female gametes), but cross-fertilise

Non-native barnacle with 4 plates

Austrominius modestus

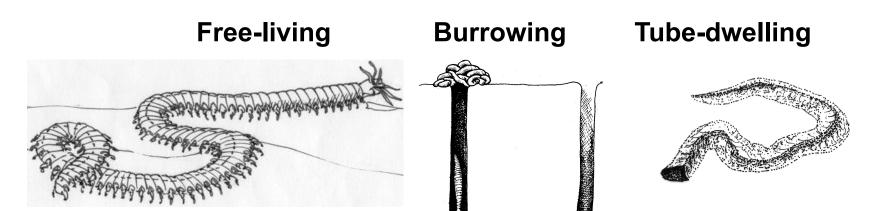
5-10 mm in diameter

Native barnacle with 6 plates
Semibalanus balanoides
Length of shell: 2cm

Barnacles

Barnacles

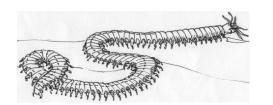
Key ID Characteristics


- Series of similar segments along body
- Gut runs through worm from mouth to anus

Bristle worms Polychaetes

Most marine worms are bristle worms

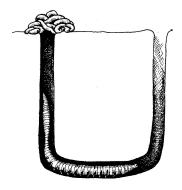
Each segment has a pair of fleshy growths with bristles


Various lifestyles:

Bristle worms Polychaetes

Free-living

Greenleaf worm Eulalia viridis


- Bright green, lives in rock crevices
- Scavenges on damaged barnacles/ mussels
- 5-15cm in length and up to 2.5cm width

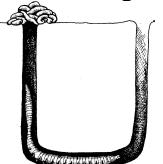
Bristle worms Polychaetes

Burrowing

Lugworm

Arenicola marina

- Lives in U-shaped burrows in muddy sand
- About 20cm below the surface
- Eats sediment and extracts organic material
- Waste material deposited in casts on sand
- Prized as fishing bait
- Length: 12-20cm



Bristle worms Polychaetes

Burrowing

Rockworm Marphysa sanguinea

- Mucus-lined burrows in soft rock, mud or gravel
- Mostly carnivorous

Bristle worms Polychaetes

A paddle worm Phyllodoce sp.

(Greenleaf worm has similar egg sacs)

Worm egg masses

A polycnaete worm Scoloplos armiger

Greenleaf worm *Eulalia viridis*

Roughly 2 – 6 cm

Bristle worms

Polychaetes

Tube-dwelling

Many worms create protective tubes

- Different species use different materials
- Tentacles emerge from end to filter food from water

Bristle worms Polychaetes

Tube-dwelling

Hard calcium tubes

Vaclouares

Keel worms Pomatoceros lamarkii

Spiral worm *Spirorbis spirorbis* Evenly coiled tube, 3-4 mm in diameter

Bristle worms Polychaetes

Tube-dwelling

Tubes of sand grains and shell fragments

Sand mason worms

Lanice conchilega

Tube, length: 45cm

Polychaetes

Segmented Worms

Bristle worms

Tube-dwelling

Tubes of cemented sand grains Colonies form reef structures, providing habitat


Honeycomb worm Ross worm

Sabellaria sp.

Sea mats

Key ID Characteristics

- Attached, colonial animals
- Hermaphrodite, sexual reproduction and brief plankton stage
- · A larva settles and a colony is built rapidly by multiple budding
- Each animal (zooid) creates a protective compartment (gelatinous in some species, hard in others)
- Some species encrust over other surfaces, others stand erect
- Mostly subtidal usually found as drift on the shore

Leafy, erect bryozoan

Bryony Chapman

Hornwrack *Flustra foliacea*

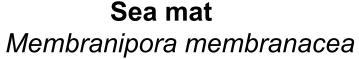
Sea mats

Gelatinous, erect bryozoan

Finger bryozoan / Sea chervil

Alcyonidium diaphanum

Up to 50 cm long but more usually 15 cm


Sea mats

Encrusting bryozoans

Frosty Sea mat Electra pilosa

- Encrusts over seaweeds
- Meandering expansion
- Oval compartments
- Spines around holes

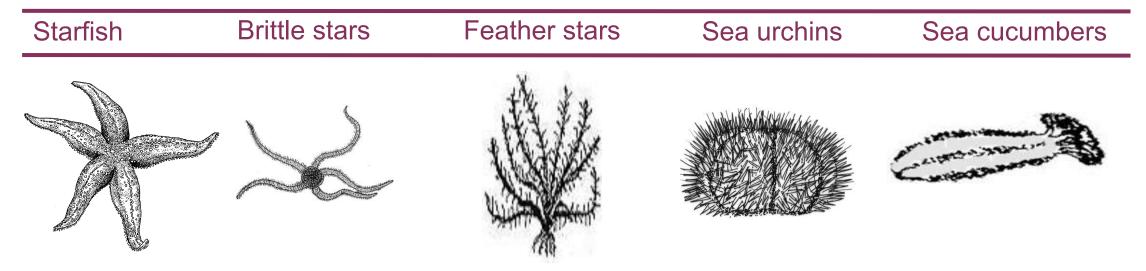
- Encrusts over seaweeds, often kelps
- Expansion in a line
- Rectangular compartments

Electra pilosa under the microscope

Sea mats vary in size, from a few cm across to covering whole seaweed fronds.

Sea mats

Encrusting bryozoans


- Great variety of species encrust over hard surfaces
- Tricky to identify without microscope
- Recorded as "encrusting bryozoan"

Echinoderms

Key ID Characteristics

- Usually 5-rayed symmetry
- Distinctive body shapes in each group
- No head
- Hard, spiny covering of calcareous plates, and often spines

Starfish Brittle stars Feather stars Sea urchins Sea cucumbers

Key ID Characteristics

• Water-filled canals and tube feet (used for movement, feeding, respiration)

Echinoderms

Phylum Echinodermata

Starfish Brittle stars Feather stars Sea urchins Sea cucumbers

- Carnivorous open bivalves, exude stomach, digest and reabsorb
- Sensitive to 'smell' of prey, predators and other starfish
- White dot (madreporite) manages pressure balance in water system
- Can re-grow lost arms
- •Diameter: 10-30cm

Common starfish Asterias rubens

Echinoderms

Phylum Echinodermata

Starfish Brittle stars Feather stars Sea urchins Sea cucumbers

- Smaller and more delicate
- Pronounced central disk and separate arms
- Feed on detritus, small dead or living animals
- Sensitive to light
- Readily cast off arms and regenerate them
- Brittlestars can occur in dense beds

Brittle star Ophiura sp.

The disc is up to about 3.5 cm in diameter

Brittle star Ophiothrix sp.

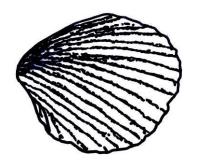
Diameter: up to 2cm

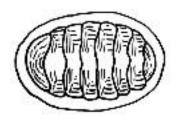
Starfish Brittle stars Feather stars Sea urchins Sea cucumbers

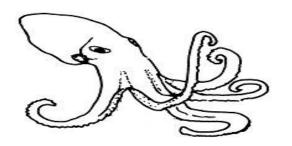
- Rigid 'test' (hard shell) and no arms, tube feet extend through test
- Spines attached with ball & socket joints protection and movement
- 'Aristotle's lantern' on underside with 5 'teeth' scraping & chewing
- Graze on algae and can tear larger seaweeds and animals
- Hide under stones low on shore

Common sea urchin (*Echinus* esculentus)

Sea potato (*Echinocardium* cordatum)







Chitons

Octopus, squid, cuttlefish

Key ID Characteristics

- Fleshy non-segmented body containing organs
- Muscular foot
- 'Mantle' or cloak of tissue over animal produces a hard shell in many molluscs
- Many species have a rasping tongue or 'radula'
- Some grazers, some carnivores, a few filter-feeders

Bivalves

Chitons

Octopus, squid, cuttlefish

Cloak/ mantle over body, secretes shell in many molluscs

Common limpetPatella vulgata

Length: 4cm

Bivalves

Chitons

Octopus, squid, cuttlefish

- Create home scar in rock
- Graze algae off rocks with rasping tongue ('radula')

Common limpet

Patella vulgata

Bivalves

Chitons

Octopus, squid, cuttlefish

Chiton

- 8-plated shell (jointed limpet)
- Well camouflaged under side of smooth rocks
- Graze on algae and bryozoans
- •Length: Up to 4cm

Bivalves

Chitons

Octopus, squid, cuttlefish

More grazers – the winkles

pear-shaped operculum
 Flat winkle
 Littorina obtusata

- Upper shore
- •Small
- Flat spire
- •Height: Up to 1.5cm

Edible winkle *Littorina littorea*

- Low on shore
- Opening in line with shell
- •Height: 3-5cm

Rough winkle
Littorina saxatilis

- Mid shore
- Opening at angle with shell
- Ridges
- •Height: 1.8cm

Bivalves

Chitons

Octopus, squid, cuttlefish

More grazers – the topshells

circular operculum

Grey topshell

Gibbula cinerea

- •Thin greyish lines on yellow
- Small umbilicus
- •1.5 cm high

Purple(flat) topshell

Gibbula umbilicalis

- Thick purple lines on green
- Large umbilicus
- Sometimes flatter
- •1.6cm high

Bivalves

Chitons

Octopus, squid, cuttlefish

Carnivores – the whelks

siphon channel, follow scent to food

Common whelk Buccinum undatum

- Mainly subtidal
- Live food and scavenges (worms)
- Length: 5-10cm

Dog whelk *Nucella lapillus*

- Mainly intertidal
- Teeth along opening
- Drills into molluscs
- Poisons barnacles
- Length: 3-6cm

Netted dog whelk

Hinia reticulata

- Reticulated shell
- Inter and sub-tidal
- Scavenges
- Up to 3cm in height

Bivalves

Chitons

Octopus, squid, cuttlefish

Carnivores – the whelks

Common whelk Buccinum undatum

Bivalves


Chitons

Octopus, squid, cuttlefish

Carnivores – the whelks

Dog whelks *Nucella lapillus*

Bivalves

Chitons

Octopus, squid, cuttlefish

Carnivores – the whelks

Netted dog whelk *Hinia reticulata*

Bivalves

Chitons

Octopus, squid, cuttlefish

Filter feeders – slipper limpets

Slipper limpets Crepidula fornicata

- Sessile animal water brings food
- Accidental introduction
- Very successful species
- Competes with other animals for space & food
- Length: 5cm

Bivalves

Chitons

Octopus, squid, cuttlefish

Seaslugs (Nudibranchs)

- Carnivorous grazers (e.g. sponges, seasquirts, bryozoans, hydroids)
- Specialised diets, select a single group or species to eat
- Utilise toxins from prey in their own defence

Up to 12 cm in length

Grey sea slug

Aeolidia papillosa

Bivalves

Chitons

Octopus, squid, cuttlefish

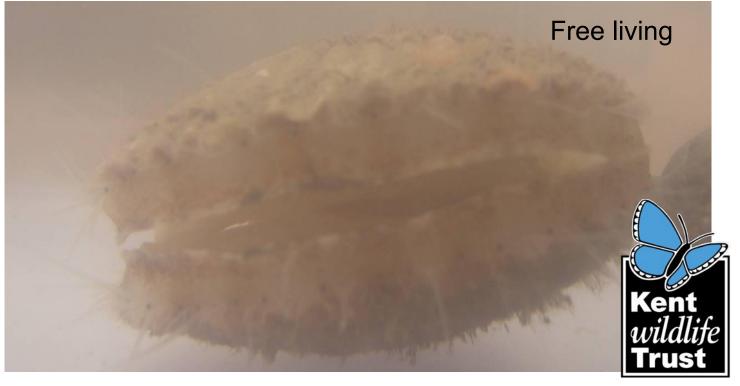
Sea hare

- Uses radula to cut open algae to eat
- Chloroplasts continue to photosynthesise for several months
- Lower shore and shallow subtidal
- Below species up to 5 cm in length

Bivalves

Chitons

Octopus, squid, cuttlefish


- Body enclosed within two shell valves
- Valves hinged and kept closed by powerful muscles
- Swim by jet propulsion using strong adductor muscles
- Filter-feed trap plankton or particulates on gills (no radula)
- Siphons direct water in and out of mantle cavity over gills

Variegated scallop

Chlamys varia

Length: up to 6cm

Molluscs

Sea snails, sea slugs, limpets

Bivalves

Chitons

Octopus, squid, cuttlefish

- Majority of bivalves live buried in sand or mud
- Usually only empty shells seen
- Use foot to dig into sand

Bury in sand

Common cockle
Cerasoderma edule
Up to 5cm long

Bury in mud

Peppery Furrow Shell
Scrobicularia plana
Up to 6.5 cm in length

Bivalves

Chitons

Octopus, squid, cuttlefish

Piddocks

- Bore holes into soft rock
- up to 12cm long

Common piddock
Pholas dactylus

Bivalves

Chitons

Octopus, squid, cuttlefish

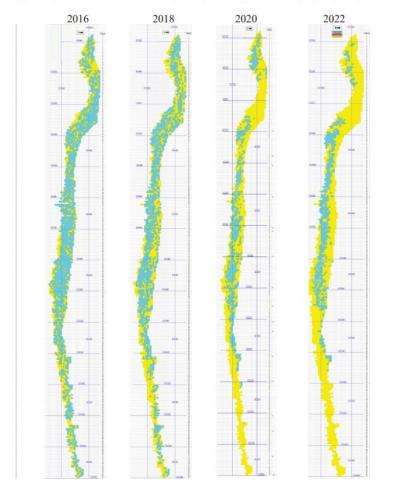
Mussels

- Out in the open
- Byssal= threads secreted by foot attach mussels to rocks/each other
- Form into extensive beds creating a living habitat
- Normally 3-10cm long

Common mussels

Bivalves

Chitons


Octopus, squid, cuttlefish

Mussels

- General decline in common mussels.
- Figure (right) shows decline in mussels at western undercliff
- Research done by Willie McKnight, published by the Kent Field Club

Appendix 3. Mapped results of survey.

Map 1/8: Distribution of M (predominantly mussels) samples in blue and S (shortfall) samples in yellow. Note absence of X (mixed) and O (predominantly oyster) samples.

Bivalves

Chitons

Octopus, squid, cuttlefish

Oysters

• Out in the open

Common / edible oyster Ostrea edulis

- Rounded shape
- Saucer and flat valves
- Subtidal
- Up to 11cm long

- Oval, and grow to shape of rock
- Wavy edged valves
- Purple blotches
- Intertidal & subtidal
- Up to 18 cm long

Bivalves

Chitons

Octopus, squid, cuttlefish

Pacific Oysters Crassostrea gigas

Introduced to be farmed on racks

Now breeding in the wild, becoming widespread and locally dominant (invasive non-native)

species)

Bivalves

Chitons

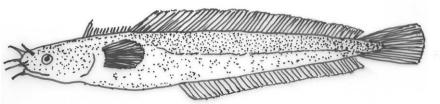
Octopus, squid, cuttlefish

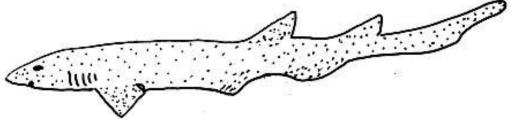
Cuttlefish

- Complex animals with sophisticated eyes
- Active predators
- Bone provides buoyancy control
- Camouflage experts
- Breed once, then die
- Up to 45cm long

Fish Phylum Chordata

Key ID Characteristics


- Complex animals with spinal cord enclosed in a backbone
- Head with distinct mouth and eyes
- Pairs of fins and a tail


Bony fish (Teleost)

- Bone skeleton
- Bony plate covering gills
- Mouth pointing forward.
- Skin with scales (developed from bone)

Cartilaginous fish (Elasmobranch)

- Cartilage skeleton
- Gill slits
- Mouth normally on underside
- Skin rough with tiny 'teeth' called denticles
- No swim bladder

Bony fish

Cartilaginous fish (sharks and rays)

- Blennies single dorsal fin
- Shanny no head tentacles

Montagu's blenny
Coryphoblennius galerita
Up to 8cm

Shanny
Lipophrys pholis
Up to 17cm

Fish

Subphylum Pisces

Bony fish

Cartilaginous fish (sharks and rays)

- Gobies two dorsal fins
- Fused pelvic fins for adhesive power

Rock goby
Gobius paganellus
Up to 12cm

Black goby
Gobius niger
Up to 17cm

Bony fish

Cartilaginous fish (sharks and rays)

Five-bearded rockling

- First dorsal fin sunken into groove
- 5 pointed 'beards' on front of head
- <u>Up to 25 cm</u>

Bony fish

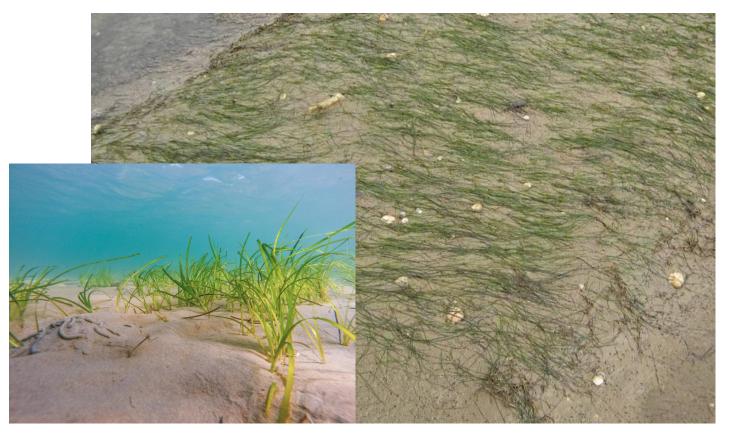
Cartilaginous fish (sharks and rays)

Ray and eggcase

Bony fish

Cartilaginous fish (sharks and rays)

Small spotted catshark and eggcase



Groups of Marine Plants

Flowering Plants

• Seagrasses

Algae/Seaweeds

- Green algae
- Brown algae
- Red algae

Seaweeds

Green algae Brown algae Red algae

Simple, non-flowering plants with a covering of mucus.

Variety of forms:

- ❖ Leafy
 - Flat leaf-like, or filamentous or feathery fronds
 - 'Holdfast' attaches plant to rocks/hard surfaces (no roots)
- ❖ Hard
 - Calcified
 - Often not attached
- Encrusting

Seaweeds

Green algae Brown algae Red algae

3 groups: Green, Brown, Red

• each group thrives in different light conditions



Seaweeds

Green algae Red algae

Wracks

Fucus spp.

Seaweeds Algae

Green algae Red algae

Seaweeds Algae

Green algae Red algae

- Introduced (invasive nonnative species)
- Spreading in rockpools

Seaweeds

Encrusting pink algae

Lithothamnion / Phymatolithon

Main Groups of Marine Animals and Plants

Animals

- Sponges (Porifera)
- Anemones, corals, hydroids, jellyfish (Cnidaria)
- Segmented Worms (Annelida)
- Crabs, lobsters, prawns, barnacles (Crustacea)
- Sea snails, sea slugs, bivalves, cuttlefish (Mollusca)
- Sea mats (Bryozoa)
- Starfish, sea urchins, etc. (Echinodermata)
- Sea squirts (Chordata Ascidia)
- Fish (Chordata)

Plants

- Green seaweed
- Brown seaweed
- Red seaweed
- Seagrasses

Recording in the field...

- Go to the lowest taxonomic level with certainty
- Take photos to be verified later

Taking photos to ID later...

- Put something in the photo for reference e.g. ruler or finger
- Leave the specimen in-situ
- Get the substrate the specimen was found on in the photo
- Take a photo of the general zone specimen was found in or feature it was found in e.g. gully or rockpool
- To ID some species 360° photos may be necessary

Max Renton
Coastal and Marine Ecologist

Max.Renton@adonisblue.org.uk

Chris Julie & Greg

Tony Child Thanet Coast Project (NEKMPA) Officer

Thanet.Coast@thanet.gov.uk
Tony.Child@thanet.gov.uk

How you can get involved...

- Shoresearch
- Thanet Coast Project
- Coastbusters
- Great Eggcase Hunt
- MCS Beach Cleans
- Beneath the Water (22 species to report)

• . . .

